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| : ABSTRACT
t

For matrices A,C € the C-numerical radius of A is the

Cron?®
nonnegative quantity

r(a) = max{|tr(CUAU)| : U unitary} .

This generalizes the classical numerical radius r(A). It is known that
rc constitutes & nom on C if and only if C 4is nonscalar and
tr C # 0. For all such C we obtain multiplicativity factors for

. rc, i.e., constants i >0 for which HE is sub-multiplicative an C .

1. Introduction and statement of Main Results.

Let ¢ o denocte the algebraof nXxXn 'cunplex matrices, and let

N:C - R

be a seminorm on vgnxn’ i.e., forall A,Be C and O ¢ g, let N fatisfy:

N(A) >0,
N(ca) = {of -N(a) ,

N(A+B) < N(A) + N(B) .

If in addition N is positive definite, that is,

N(A) >0 for AfO0 ,

then following Ostrowski [9] we say that N is a generalized matrix nomm.
Finally, if N is also (sub-) multiplicative, namely . vdavs . LSOO
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then N is called a matrix norm. Hence, N is a matrix norm if and only

.« 4 oy oo ey

if it is an algebra norm on g‘nxn'

Given a seminorm N on and a fixed constant u > 0, then clearly

Nusu.N

is a seminorm too. Similarly, Nu is a generalized matrix norm if and only
if N is. In both cases, N " may or may not be multiplicative. If it is,
then we call p a multiplicativity factor for N.

The concept of multiplicativity factors was introduced by us in [4] where
we proved the following:

j THEOREM 1.1:

(1) [4, Theorem 3] Nontrivial, indefinite seminorms on C o 4o not

"

have multiplicativity factors.

(i1) [%, Theorem 4] If N is a generalized matrix nomon C

then N has multiplicativity factors; and u >0 is a multiplicativity factor

for N if and only if

(1.1) T max{N(AB) : A,B € Cosen? N(A) =N(B) =1} .

3L N O S TN

This result provides & better insight into the relation between positive-
definiteness and submultiplicativity of seminorms on finite dimensional
algebras.

One reason for introducing the idea of multiplicativity factors was to
investigate the norm properties of C-pumerical radjl defined by us in [4] as
follows: for given matrices A,C ¢ 'gnxn’ the C-numerical radius of A 1is

the nonnegative quantity

ro(A) = max{tr|cUsU| : U mn unitary} ,
where %* AQdenotes the adjoint.
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Evidently, for C = diag(1,0,...,0), r_ reduces to the classical

Cc
numerical radius
(1.2) r(A) = max{|x*ax| :x ¢ gn_,.x*x = 1}
hence To is a generalization of r.

It is useful to recall now Lemma, 9 of [3] which implies that T is

invariant under unitary similarities of C, i.e.,

rU*CU(A) = rc(A), U unitary .

Thus, we may assume that C is upper triangular.

Regardless of the structuwre of C we have:

THEOREM 1.2.
(1) (trivial) For any fixed C, r, is a seminormaen C .

(ii) ([%, Theorem 2]; compare [8].) e is a generalized matrix nomm

on Sm’“za’ if and only if

(1.3) C is a nonscalar matrix and trCc £0 .

Theorema 1.1 (ii) and 1.2 (ii) yield now:

COROLLARY 1.1. For n > 2, r, hes multiplicativity factors if and

only if C satisfies (1.3).

Theorem 4.1 of [5] (compare {4]) provides multiplicativity factors for
all the C-numerical radii in Corollary 1.1, except for the case where C has
equal eigenvalues. In the present paper, we obtain multiplicativity factors

for all r, satisfying (1.3) as well as improve our previous results as

followa:

c




THEOREM 1.3. (Main Theorem.) ILet C = ('yij) 3

nonscalar, upper triangular matrix with tr C # 0. Denote

: n n .
t=|trc| = 32317.,3', UEJE;L vy ls 85!;2-:[733-7&],
_ cmex {2, 8
R T sy - =m{7"’+'}
(1.4)
EJZ hal?s 2Dl
w =min s
s Vg DI Vg o
ve=mxly, |, p= e, vsm{k,%—i—m' Bl } .
<k IE 27 + 2y T + 2y
Then:

(1) If C 43 normal (i.e., diagonal) with eigenvalues of the same

Coxn

s n>2, bea

argunent, then any p with

(1.5) u > /o = ofe”

i« a multiplicativity factor for

(1) If C is normal, then n

rcn

is & multiplicativity factor for

re it

(1.6)

uzcﬁ\a .

(111) If C 4s nonnormal (i.e., nondiagoral) with equal eigenvalues,

then any u with
(1.7) A > /o’

is a multiplicativity factor for r c

(iv) If C is nonnormal and its eigenvalues are not all equal, then

4 is a multiplicativity factor if

u2> u/v2 .




The proof of Theorem 1.3 is given in Section 2.

Evidently, Theorem 1.3 provides multiplicativity factors for all the C-radii
which have such factors. Parts (1), (ii) and (iv) of the therem improve our re-

sults in Theorem 4.l of [5], and part (iii) treats previously unattended cases.
The following table lists several typical examples:

e e ) G )

0
Factors none none H > 96/25 p>64/3 I 29(lz+~f2) B> 16v2

Reference | Cor. 1.1] Cor. 1.1 (1.5)% (1.6) (1.7) (1.8)

Before proceeding to the proof of Theorem 1.3, we would like to reflect

again on the ract that r, is invariant under unitary similarities of C. We

c
conclude, as in Theorem 4.2 of [5], that if r, has multiplicativity factors,
then its optimal (smallest) factor urc, is also unitarily invariant. Tt is
easily seen, however, that while T,0,A and ¢ in (1.4) (which involve only
the eigenvalues of C) are invariant under (unitary) similarities of C, the
quantities ®w,p and v may well not be invariant. Hence, our lower bounds
for u in sections (iii) and (iv) of Theorem 1.3 are possibly not unitarily
invariant, so in general these bounds are probably not optimal.

Although the bounds in (1.5) and (1.6) are unitarily invariant, we conjec-
ture that usually they are far from optimal. The only instance in which we
have knowingly achieved the best multiplicativity factor was the case of the

classical numerical radius r, where we showed [5, Theores 2.4) that ur-h;

*If C is 2 with eigenvalues of the same argument, then evidently
@ = A. Hence, the bound in (1.5) coincides with the one in (1.6), so there
is no point in giving a 22 example for Theorem 1.3 (1i).

v




i.e., B, isamatrixnommon C ,n>2, if and only if w>L. As
indicated in Theorem 2.4 of [5], this result holds for arbitrary (finite or

infinite dimensional) Hilbert spaces, where the numerical radius of a bounded
linear operator A is

A) = sup{|(Ax,x)] : (x,x) = 1} .

2. . Froof of Theorem 1.3

The main part of the proof consists of cbtaining appropriate lower bounds

for rc(A) in terms of the entries of C. We begin with,

LEMMA 2.1. {5, Lemma 4.1]. Let C= ('Y;lk) € Con De an upper triangular

matrix, and let C,» ‘1<% <n, be the matrix obtained from C by setting

the off-diagonal entries in the last n-£f colums of C equal to zero.
Then for all A € C s

(2.1) rc (A) s rc (A) s ‘-l, ses ,n"‘l .
4 £+1

With this lemma we can easily prove:

LD 2.2. Let C = ('yak) €C be upper trisngular with & diagonal
part . D g'diag(yn,./.,. "Ynn)' Then

ro(d) 2r(A) VW Ae Coxn

Proof. Using the notation in Lemma 2.1 we have

C=C , D=C .

Thus,; by (2.1),

DS s e Bt e e e l
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,rc(A) = rcn(A) > rcn-'l(A) > e > rcl(A) = rD(A)

and the proof is ccmplete. . o

LEWA 2.3. If D= dia.g('yn,...,vm) is a diagonal matrix, then

rp(4) > g- ltrA| - (n-1) 8r(a) WV Aeg R

where r(A) is the classical numerical radius in (1.2), and & and T are

defined in (1.4).
Proof: We write
D= Dl - D2
where

1 .
Dl-(; tr D)I s D, = diag(Sl,...,Gn) ,
5, =it 1
5 == rD-'YjJ s J=l,eee5n .

Since a matrix Ue C is unitary if and only if its columns

U,...5u are orthonormal (0.n.), we have

(2.2) r

D = max{ |tr(DU*AU) | : U unitary n x n}

= max{ |tr(D,UAU) - tr(D,U*AU)| : U unitary}

- m{l% tr D tr A-tr(Dau*AU)I :U unitary }

v

* .
I |tr A| - max{|tr(D,U"AV)| : U unitary}

-E jtr A| -m{lél bau;Aujl 2Upseeesu  Oom, }

n
_>_4'§|trA| -z ijl - max{ |v¥u| : u*u = 1}
J=1

1) T [8,] =(A)
trA- 5 A '
n |.3_1 3




Now, writing for convenience 'VJJ’ = 'YJ,

(23) 18] = lvy - £lvy + === + )|

1 .
= n I('YJ "Yl) L ('YJ"YJ_]_) + ('Yj -'Yd-l'l) + oo + ('YJ "'Yr)l

1 .
< a {I'YJ"Y]_ [+ =-- + l'Yj"Y‘-]_]_' * I'Yj "YJ+]_' s ¥k I'Yd "'Ynl}
n-1
=% °-
So by (2.2) and (2.3) the Lemma follows. (a]

REMARK. In the proof of Lemma 2.3 we have shown that
n
Z ladl < (n-1)3 .
J=1

It seems that this inequality can be improved to read

n : v
z Isal < n8/~f3
J=1

This would follow from the following: -

CONJECTURE. Given a set § of n polints in Euclidean space so that
the diameter of 8‘ is &, then the sﬁm of the distances of the points from
the centroid of 8 is maximal when the points are distributed in as nearly
equal numbers as possible over the verticea of a regular simplex with edge-~
length b&.

In the Buclidean plane this means the vertices of an equilateral triangle, _
80 that for n which is a multiple of 3 we get exactly n distances 5/»’3

from the centroid of the triangle. .

Having lemmas 2.2 and 2,3, we immediately ocbtain:

- — e ]
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COROLIARY 2.1. Let C ¢ Snxn be upper triangular, and for A e,gm

.1it © satisfy

[tr A] = en r(a) ,
Then
- rc(A? > {1®- (n -_1)/8}r(A) . ' {

We turn now to study the contribution of the off-diagonal entries of
C to r, (4).

LEMMA 2.4. let C = (ryjk) e C be upper triangular, and let y >0

be the largest absolute value of the off-diagonal entries of C as defined

in (1.4). Then :
To(A) 2v *R(A) VW Aeg
where

R(A) = max{|x®y| :x,y o.n. in ¢"} .

Proof. Let vy, P<4q, be an off-diagnal element of C satisfying I
(2-“) I'qul = ’Y H -

and let cq be the matrix obtained fram C by setting all off-diagonal
entries in the last n-q columns of C equal to zero.

Since for any B = (Bdk) € Cn We have

r5(A) = max{|tr.(BU™AU)| : U unitary}

.mx{l ngﬂjk-uguﬂ T see e o.n.} s
then S

n
(2.5) ¢ (A)-mx{ D v, ufAu, + Ty Aud uy,..., o.n} .
CH |a=1 33 UFAYy 3 Ik UEA nupeeeoy




Now let VyseeesVy € gn be an o.n. system such that

ivqﬁvp l = R(A) )

and denote
- *
8 = a.rs('ypq Vq Avp) )
-1 *
Q =
q arg % 'qu quvj s
3=l
3fp
VJ ’ J # p
w =
3 i(a_-a_)
Vs © 1M ) J=Pp
J
Then wl,...,wn are o.n. with
|wa(- Awpl = R(A) ,
and
q-1
a.rg('ypq ngwp) = arg JE;l Y3q W‘aij = Qq
J#p
Next, denote
> *
Q4 = *
b W F i ,,,.qu,l Vi My |

wj ’ J*q

— . et
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9-1
(2.7) a.rg('ypq zzl*Azp) = arg ( z Yiq ZaAz; )
:l#p

= gk =
,arg(Z) Vg5 Z3Az5 + 2_1'Y;jkzkAzj)"ﬂ -

By (2.5) - (2.7) and Lemma 2.1, therefore,

v+ R(&) = 'YI'qu Z¥Az | < | E 'YJJ Az, + P2 Y3k z;AzJ]

A e g =r(a) .
< "cq( ) < r0q+1(A) << rcn(A) r(A) o

We now quote an interesting result of Stolov.

LEMMA 2.5. [10, Theorem 2}. For any A € _gm,

' R(A) > rad Wa) ,

where rad W(A) is the circumradius of the numerical range of A, i.e.; the

radius of the smallest disc containing the set

WA) = {x"Ax:xe ¢, xx =1} .
Next we prove,
rad w(A) >3 r(a) - 2 |tr A}
-2 en °
Bxoof. Since the Toeplitz-Hausdorff Theorem (e.g.[2,7]) states that the
numerical range is a convex set and since the eigenvalues of A are contained

in W(A) (again [2, 7]), then the centroid of these eigenvalues, (1/n)tr A,

is a point in W(A). Consequently,




r(A) =max{|¢] : t e WA)} < % |tr A] + 2 rada w(a) ,

and the lemma follows. o

Our three last lemmas lead to:

COROLIARY 2.2. Let ‘A eC ~ be given and let © be determined by

[tr A] = en x(a) .

rc(A) > % (1-0) r(a) .

Proof. By Lemma 2.4 - 2.6, we have

rc(A) > v+-R(A) > - rad WA)

v

Lr(a) - & jtra] =3 (1-0) x(a) . O

We are now able to obtain the following lower bound for rc(A).

LEMMA 2.7. Let C = ('y._jk) € G be upper triangular with trC £0.

(i) PFor all Ae G

;51’15;‘-2;291)3;

7,6 and vy are as in (1.%); and

fall, = m{(x*A*Ax)l/a tX € gn, x*x - 1}

is the spectral (i.e. 52) norm of A.

PSRN §

e e
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(ii) If in addition, the eigenvalues of C are equal, then for all

Aegnxu’

ro(a) > elal,

where p is defined in (1.4).

Proof. Teke any A'c G, and let © satisfy |tr A| =en r(a).
Then by Corollaries 2.1 and 2.2,

(2.9) ro(a) > max{10 - (n-1)3, % (1-0)} r(a) -
Since y >0 and T = |[tr €] >0, then the expressions in the braces are

functions of © describing straight lines with opposite slopes which

intersect for 6 = eo where

o _1+2§n-128
0~ 2t +d :
Thus, for any ©,
(2.10) max{we-(n-l)s,g(l-e)}zg(1-60)=2g ;

and (2.9),. (2.10) yield

rc(A) >2tr(a) .

This together with the well known relation (e.g. {6, T1)

L
r(A) 2z 2 llAue
gives (2.8).
Part (ii) of the lemma follows from the fact that if the eigenvalues

of C are equal, then 5 =0 and ¢ =g. =

The lower bound for rc(A) in (2.8) vanishes as the off-diagonal entries
of C vanish and we are interested now in bounds which depend only on the
eigenvalues. This was done in [5] as described by our next lemma which

holds for matrices C that need not be triangular.




—

LEMMA 2.8. let C egm have eigenvalues VyseooY, &nd let

tr C £ 0. Then:

(i) For all A e Covn®
(2.11) ro(a) 2 Mall,

where in accordance with (1.k4),

- 18 N _ _ - a
A= Wi-1/m)c+d°’ °° ';?;l'\'; Yels  T=ltrc] IJElYJI .

(ii) _1:1;’ C is normal with eigenvalues of the same argument, then for

all Aegnxn’

(2.12) ro(a) > ofall,

with @ as defined in (1.4).

Proof. By Lemma 4.2 of [5], if & = x('yl,...,'yn) satisfies the inequality
(3.1) of [5], then

(2.13) ro(a) > 3 [all, VAeL o -

Reviewing the proof of Theorem 3.1 (ii) of [5] we find without daifficulty
that since 7 = |tr C] >0 (5 may vanish), then x = 78/(2r-27/n + &)
satisfies inequality (3.1) of [5); so (2.13) implies (2.11).

For part (ii) of the lemma, we mention that by Theorem 3.1 (iii) of [5],
if the Yy 8re of tbe same argument, then inequality (3.1) of [5] holds
with 7 = 5/2. Hence (2.13) ylelds

7o) 2 ¢ Il ‘

which, if combined with (2.11), gives (2.12).

~

<l
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Our next results provides upper bounds for rc(A).

LEMMA 2.9. [5, Lemma 4.3]. lLet C = ('Y;jk) € G have eigenvalues

Tpoeeestye Setb
) n ( n o n n n n
w = mn{z 1 Z l’ijl ) z 2z I'dela (> 9= Z l'YJl’T" lE'YJl
=1 k=1 k=1 YJj=1 J=1 J=1

(which agrees with (1.hk) if € is triangular.) Then:

(1) ro(8) <wlall, VAeg . -

(ii) For normal C

roa) <olal, Vv Aeg . -

(iii) For normal C with eigenvalues of the same argument,

s <ol = o, VA€ Gy -

Proof. The proof of (i) is given in [5]. Parts (ii) and (iii), whose
proof was omitted by mistake, follow immediately from part (1) and from the
fact that since To is invariant under unitary similarities of C, then
for normal C we may take C = dia.g(»yl,...,fyn). o

We 8till need the following version of a result of Gastinel.

IEMA 2.10 ([1), [4, Theorem 5).) Let M and N be a matrix nomm

and & generalized .matrix normon C -, respectively; and let 1 >8>0

be canstants satisfying -

tM(a) < FA) < Ma) V AegC . -

?
i
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Then any ¢ with u >1 /§2 is a multiplicativity factor for N.

With Lemmas 2.7 ~ 2.10 we are fipnally ready for:

Proof of Theorem 1.3. (i) If C is normal with eigenvalues of equal

argument and tr C # 0, then by Lemmas 2.8 (ii) and 2.9 (1ii),

dly < 70 st = olal, W Aeg, -

Since C is diagonal but not scalar, we have 5 >0. Thus ¢ >0, 80 Lemma
2.10 holds with

M-—.“-"a, N:rc, q=T=O', §=CP,

and (1.5) follows.

(ii) If C is normal with tr C # 0, then Lemmas 2.8 (i) and 2.9 (ii)

glve
Malp < rld) s olal, W Aegy

Since the eigenvalues are not all equal and tr C £ 0 then §>0 and 5 >0;

s0o A >0, and Lemma 2.10 again implies (1.6).
(111) By Lemmag 2.7 (ii) and 2.9 (i),
puAﬂa < rc(A) 5"'“”‘2 Vv Ae -gnxn *

Again T = |tr C| >0, and since C is nonnormal then y >0 too. Thus,
p >0, and Lemma 2.10 implies (1.7). |

(iv) last, if C is nonnormal with eigenvalues not all equal, then by
Yemmas 2.7 (1), 2.8 (1) and 2.9 (i) we have

-

viall, = max{e Al < 7o(8) <ulpl, W A€ G -

As in part (1), A >0; so v >0, and Lemms 2.10 completes the proof.

a
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